29 Jun

Basis of the further study on language – Potential 

 

Floer Homology Language 

 

TANAKA Akio 

  

Note1 

Potential of Language 

   

¶ Prerequisite conditions 

Note 6 Homology structure of Word

  

(Definition) 

(Gromov-Witten potential)  

 2 

(Theorem) 

(Witten-Dijkggraaf-Verlinde-Verlinde equation)  

  

(Theorem) 

(Structure of Frobenius manifold) 

Symplectic manifold     (M, wM) 

Poincaré duality     < . , . > 

Product     <V1 V2, V3> = V1V2V3(

(M, wM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential. 

 

(Theorem) 

Mk,β (Q1, …, Qk) =  

 

N(β) expresses Gromov-Witten potential. 

 

  

[Image] 

When Mk,β (Q1, …, Qk) is identified with language, language has potential N(β). 

     

[Reference] 

Quantum Theory for language / Synopsis / Tokyo January 15, 2004 

 

First designed on   

Tokyo April 29, 2009 

 

Newly planned on further visibility  

Tokyo June 16, 2009  

Sekinan Research Field of Language 

 

[Note, 31 March 2015] 

This paper was first designed for energy of language. But at that time, I could not write 

the proper approach from the concept of energy by mathematical process. So I wrote 

the paper through the concept of potential. Probably energy is one of the most fundamental

factors on language.

In 2003 I wrote Quantum Theory for Language , before which I wrote the manuscript focusing 

the concept of quantum abstracted from the ideogram of classical Chinese written language. 

The last target of manuscript was energy and meaning of quantum that was the ultimate 

unit of language. 

 

Refer to the next. 

Manuscript of Quantum Theory for Language. Hakuba, Nagano. March 2003 



Read more: https://srfl-paper.webnode.com/news/basis-of-the-further-study-on-language-potential/

Comments
* The email will not be published on the website.
I BUILT MY SITE FOR FREE USING