14 Jul

Floer Homology Language

TANAKA Akio 

  
 
 
 

Note1 
Potential of Language

 
 
 
¶ Prerequisite conditions 
Note 6 Homology structure of Word
 
 

(Definition) 
(Gromov-Witten potential)   2 
(Theorem) 
(Witten-Dijkggraaf-Verlinde-Verlinde equation)    

(Theorem) 
(Structure of Frobenius manifold) 
Symplectic manifold     (M, wM) 
Poincaré duality     < . , . > 
Product     <V1°V2, V3> = V1V2V3( ) (M, wM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential.  

(Theorem) 
Mk,β (Q1, ..., Qk) =   N(β) expresses Gromov-Witten potential. 
 
 
 
[Image] 
When Mk,β (Q1, ..., Qk) is identified with language, language has potential N(β). 
 
 
    

[Reference]

Quantum Theory for language / Synopsis / Tokyo January 15, 2004 

 
 

 
 

First designed on <energy of language> at 
Tokyo April 29, 2009 
Newly planned on further visibility at 
Tokyo June 16, 2009 

Sekinan Research Field of language


 

Back to sekinanlogoshome

 
 
 

Comments
* The email will not be published on the website.
I BUILT MY SITE FOR FREE USING